Characterization of a Tn5 pre-cleavage synaptic complex.
نویسندگان
چکیده
Protein catalyzed DNA rearrangements typically require assembly of complex nucleoprotein structures. In transposition and integration reactions, these structures, termed synaptic complexes, are mandatory for catalysis. We characterize the Tn5 pre-cleavage synaptic complex, the simplest transposition complex described to date. We identified this complex by gel retardation assay using short, linear fragments and have shown that it contains a dimer of transposase, two DNA molecules, and is competent for DNA cleavage in the presence of Mg(2+). We also used hydroxyl radical footprinting and interference techniques to delineate the protein-DNA contacts made in the Tn5 synaptic and monomer complexes. All positions (except position 1) of the end sequence are contacted by transposase in the synaptic complex. We have determined that positions 2-5 of the end sequence are specifically required for synaptic complex formation as they are not required for monomer complex formation. In addition, in the synaptic complex, there is a strong, local distortion centered around position 1 which likely facilitates cleavage.
منابع مشابه
The C-terminal alpha helix of Tn5 transposase is required for synaptic complex formation.
An important step in Tn5 transposition requires transposase-transposase homodimerization to form a synaptic complex competent for cleavage of transposon DNA free from the flanking sequence. We demonstrate that the C-terminal helix of Tn5 transposase (residues 458-468 of 476 total amino acids) is required for synaptic complex formation during Tn5 transposition. Specifically, deletion of eight am...
متن کاملMutation of Tn5 transposase beta-loop residues affects all steps of Tn5 transposition: the role of conformational changes in Tn5 transposition.
X-ray cocrystal structures of Tn5 transposase (Tnp) bound to its 19 base pair (bp) recognition end sequence (ES) reveal contacts between a beta-loop (amino acids 240-260) and positions 3, 4, 5, and 6 of the ES. Here, we show that mutations of residues in this loop affect both in vivo and in vitro transposition. Most mutations are detrimental, whereas some mutations at position 242 cause hyperac...
متن کاملTn5 transposase loops DNA in the absence of Tn5 transposon end sequences.
Transposases mediate transposition first by binding specific DNA end sequences that define a transposable element and then by organizing protein and DNA into a highly structured and stable nucleoprotein 'synaptic' complex. Synaptic complex assembly is a central checkpoint in many transposition mechanisms. The Tn5 synaptic complex contains two Tn5 transposase subunits and two Tn5 transposon end ...
متن کاملPulling apart catalytically active Tn5 synaptic complexes using magnetic tweezers.
The Tn5 transposase is an example of a class of proteins that move DNA sequences (transposons) via a process called transposition. DNA transposition is a widespread genetic mobility mechanism that has profoundly affected the genomes of nearly all organisms. We have used single-DNA micromanipulation experiments to study the process by which Tn5 DNA transposons are identified and processed by the...
متن کاملThree-dimensional structure of the Tn5 synaptic complex transposition intermediate.
Genomic evolution has been profoundly influenced by DNA transposition, a process whereby defined DNA segments move freely about the genome. Transposition is mediated by transposases, and similar events are catalyzed by retroviral integrases such as human immunodeficiency virus-1 (HIV-1) integrase. Understanding how these proteins interact with DNA is central to understanding the molecular basis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 302 1 شماره
صفحات -
تاریخ انتشار 2000